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1 Introduction

Let (X, d) be a complete metric space and f : X → X a self mapping of X. Suppose that Ff = {x ∈ X : F (x) = x}
is the set of fixed points of f. The classical Banach’s fixed point theorem is established in Banach [5] by using the following

contractive defination: there exists k ∈ [0, 1) such that ∀x, y ∈ X, we have

d(fx, fy) ≤ kd(x, y). (1.1)

Rhoades [19] proved the following theorem:

Theorem 1.1 Let T be a mapping from a complete metric space (X, d) into itself satisfying

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)) ∀x, y ∈ X, (1.2)

where ϕ : R+ → R+ is continuous and nondecreasing such that ϕ is positive on R+\{0}, ϕ(0) = 0 and lim
t→∞

ϕ(t) = ∞.

Then T has a unique fixed point in X.

We note that (1.1) is a special case of (1.2) by taking ϕ(t) = (1− k)t for 0 ≤ k < 1.
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Branciari [8] and Rhoades [20] proved the following theorems for contraction mapping and weakly contractive mapping

of integral type, respectively which are generalization of the Banach fixed point theorem.

Theorem 1.2 [8] Let T be a mapping from complete metric space (X, d) into itself satisfying

d(Tx,Ty)∫
0

φ(t)dt ≤ k

d(x,y)∫
0

φ(t)dt ∀x, y ∈ X, (1.3)

where k ∈ [0, 1) is a constant and φ : R+ → R+ be a Lebesgue-integrable mapping which is summable, nonnegative, and

such that for each ϵ > 0,
ϵ∫
0

φ(t)dt > 0. Then T has a unique fixed point z ∈ X, such that for each x ∈ X, limn→∞T
nx = z.

Theorem 1.3 [20] Let T be a mapping from complete metric space (X, d) into itself satisfying

d(Tx,Ty)∫
0

φ(t)dt ≤ k

m(x,y)∫
0

φ(t)dt ∀x, y ∈ X, (1.4)

where m(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)
2 }, and

d(Tx,Ty)∫
0

φ(t)dt ≤ k

M(x,y)∫
0

φ(t)dt∀x, y ∈ X, (1.5)

with M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)},
where k ∈ [0, 1) and φ : R+ → R+ in both cases is as defined in Theorem 1.1. Then T has a unique fixed point z ∈ X, such

that for each x ∈ X, limn→∞T
nx = z.

Afterward, many authors extended this work to more general contractive conditions. The works noted in [21, 3, 1, 11,

17].

The following definition is taken from Breind [6]

Definition 1.1 A single valued mapping f on a metric space X is called a weak contraction or (δ, L)−weak con-

traction if and only if there exists two constants L ≥ 0 and δ ∈ [0, 1) such that

d(fx, fy) ≤ δd(x, y) + L(d(y, fx), ∀x, y ∈ X. (1.6)

We shall employ the following definitions in the sequal to obtain our results.

Definition 1.2 [16] A function Ψ : R+ → R+ is called a comparison function if it satisfies the following condi-

tions

(i) Ψ is monotone increasing, Ψ(t) < t for some t > 0,

(ii) Ψ(0) = 0,

(iii) lim
n→∞

Ψn(t) = 0, ∀t ≥ 0.

Definition 1.3 [14, 4] The function ψ : [0,∞) → [0,∞) is called an altering distance function if and only if the

following properties are satisfied

1. ψ is continuous and non-decreasing.

2. ψ(t) = 0 ⇔ t = 0.

Afterwards, the outhers in [16], [15] and others continued the study of the existence of fixed points and common fixed

points for several contractive mappings of integral type in complete metric spaces. In 2010 M. O. Olatinwo [16] generalized

the result of Branciari and established the following fixed point theorems
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Theorem 1.4 [16] Let (X, d) be a complete metric space and f : X → X satisfies a (L,ψ) -weak contraction of

integral type

d(fx,fy)∫
0

φ(t)dυ(t) ≤ L(

d(x,fx)∫
0

φ(t)dυ(t))r(

d(y,fx)∫
0

φ(t)dυ(t)) + ψ(

d(x,y)∫
0

φ(t)dυ(t)) ∀x, y ∈ X, (1.7)

where L ≥ 0, r ≥ 0. Suppose that

(i) ψ : R+ → R+ is a continuous comparison function and υ : R+ → R+ is a monotone increasing functions,

(ii) φ : R+ → R+ be a Lebesgue-Stieltjes integrable mapping which is summable, nonnegative and for each ϵ > 0,
ϵ∫
0

φ(t)dυ(t) > 0.

Then f has a unique fixed point x∗ ∈ X such that for each x ∈ X, limn→∞f
nx = x∗.

Theorem 1.5 [16] Let (X, d) be a complete metric space and f : X → X satisfies a (ϕ, ψ) -weak contraction of

integral type

d(fx,fy)∫
0

φ(t)dυ(t) ≤ ϕ(

d(x,fx)∫
0

φ(t)dυ(t))(

d(y,fx)∫
0

φ(t)dυ(t)) + ψ(

d(x,y)∫
0

φ(t)dυ(t)) ∀x, y ∈ X. (1.8)

Suppose that

(i) ψ : R+ → R+ is a continuous comparison function,

(ii) Φ, υ : R+ → R+ are monotone increasing functions such that Φ is continuous and Φ(0) = 0,

(iii) φ : R+ → R+ be a Lebesgue-Stieltjes integrable mapping which is summable, nonnegative and for each ϵ > 0,
ϵ∫
0

φ(t)dυ(t) > 0 and υ : R+ → R+ is also an increasing function. Then f has a unique fixed point x∗ ∈ X such that for

each x ∈ X, limn→∞f
nx = x∗.

In 2012, H. Aydi [4] presented the following definition and fixed point theorem for contractive condition of integral type

involving altering distances as the following

Definition 1.4 [4] u : [0,+∞) → [0,+∞) is subadditive on each [a, b] ⊂ [0,+∞) if,

a+b∫
0

φ(t)dt ≤
a∫

0

φ(t)dt+

b∫
0

φ(t)dt.

Theorem 1.6 [4] Let (X, d) be a complete metric space and f : X → X such that

ψ(

d(fx,fy))∫
0

u(t)dt) ≤ ψ(θ(x, y))− Φ(θ(x, y)), (1.9)

for each x, y ∈ X with non−negative real numbers α, β, γ such that

2α+ β + 2γ < 1, where ψ, Φ are altering distances, and

θ(x, y) = α
d(x,fx)+d(y,fy)∫

0

u(t)dt

+β

d(x,y)∫
0

u(t)dt+ γ

max{d(x,fy),d(y,fx)}∫
0

u(t)dt, (1.10)

where u(t) : [0,+∞) → [0,+∞) be a Lebesgue−integrable mapping which is summable, subadditive on each subset of

R+, non-negative such that for each

ϵ > 0,

ϵ∫
0

u(t)dt > 0.
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Then f has a unique fixed point in X.

The notion of modular space, as a generalization of a metric space, was introduced by Nakano[13] in 1950 and redefined

and generalized by Musielak and Orlicz[12] in 1959. In the existence of fixed point theory and Banach contraction principle

occupies a prominent place in the study of metric spaces, it become a most popular tool in solving problems in mathematical

analysis and construct methods in mathematics to solve problems in applied mathematics and sciences. In this article we

study and prove the existence of fixed point theorems for mappings in modular spaces.

2 Preliminaries

We will start with a brief recollection of basic concepts and facts in modular spaces and modular metric spaces (see [9],

[10], [18], [2] and [7]).

Definition 2.1 [18] Let X be an arbitrary vector space over K = (R or C).

a) A functional ρ : X → [0,∞] is called modular if:

(i) ρ(x) = 0 iff x = 0.

(ii) ρ(αx) = ρ(x) for α ∈ K with |α| = 1, for all x ∈ X .

(iii) ρ(αx+ βy) ≤ ρ(x) + ρ(y) if α, β ≥ 0, α+ β = 1, for all x, y ∈ X .

If (iii) is replaced by:

(iv) ρ(αx+ βy) ≤ αρ(x) + βρ(y) for α, β ≥ 0, α+ β = 1, for all x, y ∈ X , then the modular is called convex modular.

b) If ρ a modular in X, then the set Xρ = {x ∈ X : ρ(αx) → 0 as α→ 0} is called a modular space.

Remark 2.1 [18] Note that ρ is an increasing function as the following, suppose 0 < a < b, then, property (iii)

with y = 0 shows that

ρ(ax) = ρ(
a

b
(bx)) ≤ ρ(bx).

Definition 2.2 [18] Let Xρ be a modular space.

a) A sequence (xn)n ∈N in Xρ is said to be:

(i)ρ−convergent to x if ρ(xn − x) → 0 as n→ ∞.

(ii) ρ−Cauchy if ρ(xn − xm) → 0 as n,m→ ∞.

b) Xρ is ρ−complete if every ρ−Cauchy sequence is ρ−convergent.

c) A subset B ⊂ Xρ is said to be ρ−closed if for any sequence

(xn)n ∈N ⊂ B and xn → x we have x ∈ B.

d) A subset B ⊂ Xρ is called ρ−bounded if δρ(B) = sup ρ(x− y) <∞
for all x, y ∈ B, where δρ(B) is called the ρ−diameter of B.

e)ρ has the Fatou property if:

ρ(x− y) ≤ lim inf ρ(xn − yn),

whenever xn → x and yn → y as n→ ∞.

f) ρ is said to satisfy the ∆2−condition if ρ(2xn) → 0, whenever (xn) → 0 as n→ ∞.

Remark 2.2 [7] Note that since ρ does not satisfy a priori the triangle inequality, we cannot expect that if {xn} and

{yn} are ρ−convergent, respectively, to x and y then {xn + yn} is ρ−convergent to {x + y}, neither that a ρ−convergent

sequence isρ−Cauchy.
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Definition 2.3 [18] Let Xρ be a modular space, where ρ satisfies the ∆2−condition. Two self−mappings T and h

of X are called ρ−compatible if ρ(Thxn − hTxn) → 0, whenever (xn)n ∈N is a sequence in Xρ such that hxn → z and

Txn → z for some point z ∈ Xρ.

3 Main Results

In this section, we study the existence of a common fixed point for ρ−compatible mappings satisfying a (ϕ−Ψ)−weak

contraction of integral type in modular spaces

Theorem 3.1 Let Xρ be a ρ−complete modular space, where ρ satisfies the ∆2−condition. Suppose c, l ∈ R+,

c > l and T, h : Xρ → Xρ are two ρ−compatible mappings such that T (Xρ) ⊆ h(Xρ) and

ρ(c(Tx−Ty)∫
0

φ(t)dν(t) ≤ Ψ(
ρ(l(hx−hy))∫

0

φ(t)dν(t))

+ϕ(

ρ(l(hx−Tx))∫
0

φ(t)dν(t))(

ρ(l(hy−Tx))∫
0

φ(t)dν(t)), (3.1)

for each x, y ∈ Xρ, Ψ : R+ → R+ is a continuous compasion function and ν, ϕ : R+ → R+ are montone increasing func-

tions, such that ϕ(0) = 0. Let φ : R+ → R+ be a Lebesgue−Stieltjes integrable mapping which is summable, nonnegative,

and such that for each

ϵ > 0,

ϵ∫
0

φ(t)dν(t) > 0. (3.2)

If one of h or T is continuous, then there exists a unique common fixed point of h and T.

Proof: Let α ∈ R+ be the conjugate of c
l such that l

c + 1
α = 1. Let x◦ be an arbitrary point of Xρ and generate induc-

tively the sequence (Txn)n∈N as Txn = hxn+1. For each integer n ≥ 1, inequality (3.1) shows that

ρ(c(Txn−1−Txn))∫
0

φ(t)dν(t) ≤ Ψ(
ρ(l(hxn−1−hxn))∫

0

φ(t)dν(t))

+ϕ(

ρ(l(hxn−1−Txn−1))∫
0

φ(t)dν(t))(

ρ(l(hxn−Txn−1))∫
0

φ(t)dν(t))

≤ Ψ(

ρ(c(Txn−2−Txn−1))∫
0

φ(t)dν(t)) + ϕ(

ρ(c(Txn−2−Txn−1))∫
0

φ(t)dν(t))(

ρ(c(Txn−1−Txn−1))∫
0

φ(t)dν(t))

≤ Ψ(

ρ(c(Txn−2−Txn−1))∫
0

φ(t)dν(t)) ≤ ....... ≤ Ψn(

ρ(c(x−Tx))∫
0

φ(t)dν(t)). (3.3)

Taking the limit in (3.3) as n→ ∞ yields

lim
n→∞

ρ(c(Txn−1−Txn))∫
0

φ(t)dν(t) = 0, (3.4)

since lim
n→∞

Ψn(
ρ(c(x−Tx))∫

0

φ(t)dν(t)) = 0, using (3.2) and (3.4), we get
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lim
n→∞

ρ(c(Txn−1 − Txn)) = 0. (3.5)

Now we show that (Txn)n∈N is ρ−Cauchy. If not, then there exists an ϵ > 0 and two sequences of integers {n(s)}, {m(s)},
with n(s) > m(s) ≥ s, such that

ρ(l(Txn(s) − Txm(s))) ≥ ϵ for s = 1, 2, ...... (3.6)

We can assume that

ρ(l(Txn(s)−1 − Txm(s))) < ϵ. (3.7)

To prove inequality (3.7) we can see [18].

Again from (3.1), we get

ρ(c(Txm(s)−Txn(s)))∫
0

φ(t)dν(t) ≤ Ψ(

ρ(l(hxm(s)−hxn(s)))∫
0

φ(t)dν(t))

+ϕ(

ρ(l(hxm(s)−Txm(s)))∫
0

φ(t)dν(t))(

ρ(l(hxn(s)−Txm(s)))∫
0

φ(t)dν(t))

= Ψ(
ρ(l(Txm(s)−1−Txn(s)−1))∫

0

φ(t)dν(t))+

ϕ(

ρ(l(Txm(s)−1−Txm(s)))∫
0

φ(t)dν(t))(

ρ(l(Txn(s)−1−Txm(s)))∫
0

φ(t)dν(t)), (3.8)

moreover,

ρ(l(Txm(s)−1 − Txn(s)−1)) = ρ(
αl

α
(Txm(s)−1 − Txm(s)) + ρ(

lc

c
(Txm(s) − Txn(s)−1)

≤ ρ(αl(Txm(s)−1 − Txm(s))) + ρ(c(Txm(s) − Txn(s)−1)), (3.9)

taking the limit as s→ ∞ in(3.9) and using (3.5), (3.7) and using ∆2−condition, we have

ρ(l(Txm(s)−1−Txn(s)−1))∫
0

φ(t)dν(t)) ≤
ϵ∫

0

φ(t)dν(t)), (3.10)

in (3.8), taking the limit as s→ ∞ and using (3.10), (3.7) and (3.6), we get

ϵ∫
0

φ(t)dν(t)) ≤

ρ(c(Txn(s)−Txm(s)))∫
0

φ(t)dν(t)) ≤ Ψ(

ρ(l(Txn(s)−1−Txm(s)−1))∫
0

φ(t)dν(t))

≤ Ψ(

ϵ∫
0

φ(t)dν(t)) <

ϵ∫
0

φ(t)dν(t)),

which is a contradiction. Therefore, by ∆2−condition (Txn)n∈N is ρ−Cauchy.
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Since Xρ is ρ−complete, then there exists z ∈ Xρ such that

ρ(c(Txn − z)) → 0 as n→ ∞.

If T is continuous, then T 2xn → Tz and Thxn → Tz. Since ρ(c(hTxn − Thxn)) → 0, then by ρ−compatibility,

hTxn → Tz. We now prove that z is a fixed point of T , if not, we have from (3.1)

ρ(c(T 2xn−Txn))∫
0

φ(t)dν(t) ≤ Ψ(
ρ(l(hTxn−hxn))∫

0

φ(t)dν(t))

+ϕ(

ρ(l(hTxn−T 2xn))∫
0

φ(t)dν(t))(

ρ(l(hxn−T 2xn))∫
0

φ(t)dν(t)).

Taking the limit as n→ ∞, we get

ρ(c(Tz−z))∫
0

φ(t)dν(t) ≤ Ψ(

ρ(l(Tz−z))∫
0

φ(t)dν(t))

<

ρ(l(Tz−z))∫
0

φ(t)dν(t) <

ρ(c(Tz−z))∫
0

φ(t)dν(t).

Leading to a contradiction again. Therefore z = Tz. Moreover, T (Xρ) ⊆ h(Xρ) and thus, there exists a point z1 ∈ Xρ such

that

z = Tz = hz1. (3.11)

From (3.1), we obtain

ρ(c(T 2xn−Tz1))∫
0

φ(t)dν(t) ≤ Ψ(
ρ(l(hTxn−hz1))∫

0

φ(t)dν(t))

+ϕ(

ρ(l(hTxn−T 2xn))∫
0

φ(t)dν(t))(

ρ(l(hz1−T 2xn))∫
0

φ(t)dν(t)),

as n→ ∞, and using (3.11), we get

ρ(c(z−Tz1))∫
0

φ(t)dν(t) ≤ Ψ(0) = 0, (3.12)

so that (3.12), we have a contradiction. Therefore by properties of φ,we get
ρ(c(z−Tz1))∫

0

φ(t)dν(t) = 0, from which is follows

that

ρ(c(z − Tz1)) = 0, or z = Tz1 = hz1.

Also, hz = hTz1 = Thz1 = Tz = z (see [18]). Therefore z is a common fixed point of T and h. In addition, if one consider

h to be continuous instead of T, then by similar argument as above, one can prove that Tz = hz = z.

For uniqueness, suppose that (w ̸= z) be another common fixed point of T and h then from (3.1), we get
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ρ(c(z−w))∫
0

φ(t)dν(t) =
ρ(c(Tz−Tw))∫

0

φ(t)dν(t)

≤ Ψ(

ρ(l(hz−hw))∫
0

φ(t)dν(t)) + ϕ(

ρ(l(hz−Tz))∫
0

φ(t)dν(t))(

ρ(l(hw−Tz))∫
0

φ(t)dν(t)),

≤ Ψ(

ρ(l(z−w))∫
0

φ(t)dν(t)) ≤ Ψ(

ρ(c(z−w))∫
0

φ(t)dν(t)) < (

ρ(c(z−w))∫
0

φ(t)dν(t)).

Leading to a contradiction again. Therefore, by the condition on φ, we get
ρ(c(z−w))∫

0

φ(t)dν(t) = 0, from which it follows

that

ρ(c(z − w)) = 0 or z = w.

Hence T and h have a unique common fixed point.

The following theorem is another version of Theorem 3.1 when l = c, by adding the restrictions that T, h : B → B,

where B is a ρ−closed and ρ−bounded subset of Xρ.

Theorem 3.2 Let Xρ be a ρ−complete modular space, where ρ satisfies the ∆2−condition and B is a ρ−closed and

ρ−bounded subset of Xρ. Suppose T, h : B → B, are ρ−compatible mappings such that T (Xρ) ⊆ h(Xρ) and

ρ(c(Tx−Ty)∫
0

φ(t)dν(t) ≤ Ψ(
ρ(c(hx−hy))∫

0

φ(t)dν(t))

+ϕ(

ρ(c(hx−Tx))∫
0

φ(t)dν(t))(

ρ(c(hy−Tx))∫
0

φ(t)dν(t))

for each x, y ∈ Xρ, Ψ : R+ → R+ is a continuous compasion function and ν, ϕ : R+ → R+ are montone increasing func-

tions, such that ϕ(0) = 0. Let φ : R+ → R+ be a Lebesgue−Stieltjes integrable mapping which is summable, nonnegative,

and such that for each ϵ > 0,

ϵ∫
0

φ(t)dν(t) > 0.

If one of h or T is continuous, then there exists a unique common fixed point of h and T.

Proof: let x ∈ B, m, n ∈ N. Then,

ρ(c(Txn+m−Txm)∫
0

φ(t)dν(t) ≤ Ψ(
ρ(c(hxn+m−hxm))∫

0

φ(t)dν(t))

+ϕ(

ρ(c(hxn+m−Txn+m))∫
0

φ(t)dν(t))(

ρ(c(hxm−Txn+m))∫
0

φ(t)dν(t))

≤ Ψ(

ρ(c(Txn+m−1−Txm−1))∫
0

φ(t)dν(t)) + ϕ(

ρ(c(Txn+m−1−Txn+m))∫
0

φ(t)dν(t))

(

ρ(c(Txm−1−Txn+m))∫
0

φ(t)dν(t)),
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Taking the limit as n, m→ ∞ and using (3.5), we have

lim
n,m→∞

ρ(c(Txn+m−Txm))∫
0

φ(t)dν(t) ≤ lim
n,m→∞

Ψ(

ρ(c(Txn+m−1−Txm−1))∫
0

φ(t)dν(t))

≤ lim
m→∞

Ψm(

ρ(c(Txn−x))∫
0

φ(t)dν(t)) ≤ lim
m→∞

Ψm(

δρ(B)∫
0

φ(t)dν(t)).

Since B is ρ−bounded, then,

lim
n,m→∞

ρ(c(Txn+m−Txm))∫
0

φ(t)dν(t) ≤ 0,

which implies that lim
n,m→∞

ρ(c(Txn+m − Txm) = 0.

Therefore by ∆2−condition, (Txn)n∈N is ρ−Cauchy. Since Xρ is ρ−complete, then there exists z ∈ Xρ such that

ρ(c(Txn − z)) → 0 as n→ ∞.

If T is continuous, then T 2xn → Tz and Thxn → Tz. Since ρ(c(hTxn − Thxn)) → 0, then by ρ−compatibility,

hTxn → Tz.

We now prove that z is a fixed point of T, if not, we have from (3.1)

ρ(c(T 2xn−Txn))∫
0

φ(t)dν(t) ≤ Ψ(
ρ(c(hTxn−hxn))∫

0

φ(t)dν(t))

+ϕ(

ρ(c(hTxn−T 2xn))∫
0

φ(t)dν(t))(

ρ(c(hxn−T 2xn))∫
0

φ(t)dν(t)).

Taking the limit as n→ ∞, we get

ρ(c(Tz−z))∫
0

φ(t)dν(t) ≤ Ψ(

ρ(c(Tz−z))∫
0

φ(t)dν(t)) <

ρ(c(Tz−z))∫
0

φ(t)dν(t).

Leading to a contradiction again. Therefore z = Tz. Moreover, T (Xρ) ⊆ h(Xρ) and thus there exists a point z1 ∈ Xρ such

that

z = Tz = hz1.

From (3.1), we obtain

ρ(c(T 2xn−Tz1))∫
0

φ(t)dν(t) ≤ Ψ(
ρ(c(hTxn−hz1))∫

0

φ(t)dν(t))

+ϕ(

ρ(c(hTxn−T 2xn))∫
0

φ(t)dν(t))(

ρ(c(hz1−T 2xn))∫
0

φ(t)dν(t)),

as n→ ∞, and using (3.11), we get
ρ(c(z−Tz1))∫

0

φ(t)dν(t) ≤ Ψ(0) = 0,
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so that (3.12), we have a contradiction. Therefore by the condition on φ, we get
ρ(c(z−Tz1))∫

0

φ(t)dν(t) = 0, from which is

follows that

ρ(c(z − Tz1)) = 0, or z = Tz1 = hz1.

Also hz = hTz1 = Thz1 = Tz = z. Therefore z is a common fixed point of T and h. In addition, if one considers h to be

contiuous instead of T, then by similar argument as above, one can prove Tz = hz = z.

For uniqueness, suppose that (z ̸= w) are two arbitrary common fixed point of T and h, then from (3.1), we get

ρ(c(z−w))∫
0

φ(t)dν(t) =
ρ(c(Tz−Tw))∫

0

φ(t)dν(t)

≤ Ψ(

ρ(l(hz−hw))∫
0

φ(t)dν(t)) + ϕ(

ρ(l(hz−Tz))∫
0

φ(t)dν(t))(

ρ(l(hw−Tz))∫
0

φ(t)dν(t)),

≤ Ψ(

ρ(l(z−w))∫
0

φ(t)dν(t)) ≤ Ψ(

ρ(c(z−w))∫
0

φ(t)dν(t)) < (

ρ(c(z−w))∫
0

φ(t)dν(t)).

Leading to a contradiction again. Therefore, by the conditions on φ, we get
ρ(c(z−w))∫

0

φ(t)dν(t) = 0, from which it follows

that

ρ(c(z − w)) = 0 or z = w.

Hence T and h have a unique common fixed point.

Now, we study the existence of a common fixed point for ρ−compatible mappings in modular spaces involving altering

distances of integral type in the following Theorem.

Theorem 3.3 Let Xρ be a ρ−complete modular space, where ρ satisfies the ∆2−condition. Suppose c, l ∈ R+,

c > l and T, h : Xρ → Xρ are two ρ−compatible mappings such that T (Xρ) ⊆ h(Xρ) and

ψ(

ρ(c(Tx−Ty))∫
0

u(t)dt) ≤ ψ(θ(x, y))− Φ(θ(x, y)), (3.13)

for each x, y ∈ Xρ with non−negative real numbers ζ, β, γ such that

2ζ + β + 2γ < 1, where ψ, Φ are altering distances, and

θ(x, y) = ζ
ρ(l(hx−Tx)+l(hy−Ty))∫

0

u(t)dt

+β

ρ(l(hx−hy))∫
0

u(t)dt+ γ

max{ρ(l(hx−Ty)),ρ(l(hy−Tx))}∫
0

u(t)dt, (3.14)

where u(t) : R+ → R+ be a Lebesgue−integrable mapping which is summable, subadditive on each subset of R+, nonneg-

ative such that for each

ϵ > 0,

ϵ∫
0

u(t)dt > 0. (3.15)

If one of h or T is continuous, then there exists a unique fixed point of h and T

Proof: Let α ∈ R+ be the conjugate of c
l such that l

c + 1
α = 1. Let x be an arbitrary point of Xρ and generate induc-

tively the sequence (Txn)n∈N as Txn = hxn+1. For each integer n ≥ 1, by (3.14), we have for each integer n ≥ 1,
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θ(xn+1, xn) = ζ
ρ(l(hxn+1−Txn+1)+l(hxn−Txn))∫

0

u(t)dt

+β

ρ(l(hxn+1−hxn))∫
0

u(t)dt+ γ

max{ρ(l(hxn+1−Txn)),ρ(l(hxn−Txn+1))}∫
0

u(t)dt

= ζ
ρ(l(Txn−Txn+1)+l(Txn−1−Txn))∫

0

u(t)dt

+β

ρ(l(Txn−Txn−1))∫
0

u(t)dt+ γ

max{ρ(l(Txn−Txn)),ρ(l(Txn−1−Txn+1))}∫
0

u(t)dt, (3.16)

by subadditive of u, we have

θ(xn+1, xn) = ζ
ρ(l(Txn−Txn+1))∫

0

u(t)dt+ ζ
ρ(l(Txn−1−Txn)∫

0

u(t)dt

+β

ρ(l(Txn−Txn−1))∫
0

u(t)dt+ γ

ρl(Txn−1−Txn+1)∫
0

u(t)dt.

Moreover, (c > l) and

ρ(l(Txn−1 − Txn+1)) ≤ ρ(
αl

α
(Txn−1 − Txn)) + ρ(

cl

c
(Txn − Txn+1))

≤ ρ(αl(Txn−1 − Txn)) + ρ(c(Txn − Txn+1)),

which implies

θ(xn+1, xn) ≤ ζ
ρ(c(Txn−Txn+1))∫

0

u(t)dt

+ζ

ρ(c(Txn−1−Txn))∫
0

u(t)dt+ β

ρ(c(Txn−Txn−1))∫
0

u(t)dt

+γ

ρ(c(Txn−1−Txn))∫
0

u(t)dt+ γ

ρ(c(Txn−Txn+1))∫
0

u(t)dt. (3.17)

From (3.13) and (3.17), we have

ψ(

ρ(c(Txn+1−Txn))∫
0

u(t)dt) ≤ ψ(θ(xn+1, xn))− Φ(θ(xn+1, xn)) ≤ ψ(θ(xn+1, xn))

= ψ(ζ

ρ(c(Txn−Txn+1))∫
0

u(t)dt+ ζ

ρ(c(Txn−1−Txn))∫
0

u(t)dt

+β

ρ(c(Txn−Txn−1))∫
0

u(t)dt+ γ

ρ(c(Txn−1−Txn))∫
0

u(t)dt

+γ

ρc(Txn−Txn+1))∫
0

u(t)dt).
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By the fact ψ is non-decreasing, we get

ρ(c(Txn+1−Txn))∫
0

u(t)dt ≤ (θ(xn+1, xn)) ≤ (ζ + γ)
ρ(c(Txn+1−Txn))∫

0

u(t)dt

+(ζ + β + γ)

ρ(c(Txn−Txn−1))∫
0

u(t)dt,

which implies that

ρ(c(Txn+1−Txn))∫
0

u(t)dt ≤ ζ + β + γ

1− ζ − γ

ρ(c(Txn−Txn−1))∫
0

u(t)dt.

Letting h = ζ+β+γ
1−ζ−γ . By hypotheses on ζ, β and γ, we get h ∈ [0, 1). By induction, we have

ρ(c(Txn+1−Txn))∫
0

u(t)dt ≤ h

ρ(c(Txn−Txn−1))∫
0

u(t)dt ≤ hn
ρ(c(Tx−x))∫

0

u(t)dt.

Taking the limit as n→ ∞ yields,

lim
n

ρ(c(Txn+1−Txn))∫
0

u(t)dt ≤ 0,

thus inequality (3.15) implies that

lim
n→∞

ρ(c(Txn+1 − Txn)) → 0. (3.18)

Now, we show that (Txn)n∈N is ρ−Cauchy. If not, then, there exists

an ϵ > 0 and two sequences of integers {n(s)}, {m(s)}, with n(s) > m(s) ≥ s, such that

ρ(l(Txn(s) − Txm(s))) ≥ ϵ for s = 1, 2, ..... (3.19)

We can assume that

ρ(l(Txn(s)−1 − Txm(s))) < ϵ. (3.20)

Again from (3.14), we have

θ(xm(s), xn(s)) = ζ
ρ(l(hxm(s)−Txm(s))+l(hxn(s)−Txn(s)))∫

0

u(t)dt

+β

ρ(l(hxm(s)−hxn(s)))∫
0

u(t)dt+ γ

max{ρ(l(hxm(s)−Txn(s))),ρ(l(hxn(s)−Txm(s)))}∫
0

u(t)dt

= ζ
ρ(l(Txm(s)−1−Txm(s))+l(Txn(s)−1−Txn(s)))∫

0

u(t)dt+ β
ρ(l(Txm(s)−1−Txn(s)−1))∫

0

u(t)dt

+γ

max{ρ(l(Txm(s)−1−Txn(s))),ρ(l(Txn(s)−1−Txm(s)))}∫
0

u(t)dt, (3.21)
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moreover,

ρ(l(Txm(s)−1 − Txn(s)−1)) ≤ ρ(
αl

α
(Txm(s)−1 − Txm(s))) + ρ(

cl

c
(Txm(s) − Txn(s)−1))

≤ ρ(αl(Txm(s)−1 − Txm(s))) + ρ(c(Txm(s) − Txn(s)−1)),

using the ∆2−condition and (18), we get

lim
s→∞

ρ(αl(Txm(s)−1 − Txm(s))) = 0. (3.22)

Therefore

lim
s→∞

ρ(l(Txm(s)−1−Txn(s)−1))∫
0

u(t)dt ≤
ϵ∫

0

u(t)dt, (3.23)

also

ρ(l(Txm(s)−1 − Txn(s))) ≤ ρ(
αl

α
(Txm(s)−1 − Txm(s))) + ρ(

cl

c
(Txm(s) − Txn(s)))

≤ ρ(αl(Txm(s)−1 − Txm(s))) + ρ(c(Txm(s) − Txn(s))),

using the ∆2−condition and (3.19), (3.20), (3.22), we have

lim
s→∞

max{ρ(l(Txm(s)−1−Txn(s))),ρ(l(Txn(s)−1−Txm(s)))}∫
0

u(t)dt ≤
ϵ∫

0

u(t)dt. (3.24)

Taking the limit as s→ ∞ in (3.21), using (3.18), (3.23) and (3.24), we have

lim
s→∞

θ(xm(s), xn(s)) ≤ (β + γ)

ϵ∫
0

u(t)dt. (3.25)

On the other hand, by (3.13)

ψ(

ρ(c(Txm(s)−Txn(s))∫
0

u(t)dt) ≤ ψ(θ(xm(s), xn(s)))− Φ(θ(xm(s), xn(s)))

Taking s→ ∞ and using the continuity of ψ and Φ, we have from (3.19), (3.25)

ψ(
ϵ∫
0

u(t)dt) ≤ ψ(
ρ(c(Txm(s)−Txn(s))∫

0

u(t)dt)

≤ ψ((β + γ)

ϵ∫
0

u(t)dt)− Φ((β + γ)

ϵ∫
0

u(t)dt)

≤ ψ(

ϵ∫
0

u(t)dt)− Φ((β + γ)

ϵ∫
0

u(t)dt),

which implies that Φ((β + γ)
ϵ∫
0

u(t)dt) = 0, so by a property of Φ, we get
ϵ∫
0

u(t)dt = 0, that is a contradiction. Thus
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(Txn)n∈N is ρ−Cauchy.

Since Xρ is ρ−complete, then there exists z ∈ Xρ such that

ρ(c(Txn − z)) → 0 as n→ ∞.

If T is continuous, then T 2xn → Tz and Thxn → Tz. Since ρ(c(hTxn − Thxn)) → 0, then by ρ−compatibility,

hTxn → Tz.

We now prove that z is a fixed point of T, we have from (3.14)

θ(Txn, xn) = ζ
ρ(l(hTxn−T 2xn)+l(hxn−Txn))∫

0

u(t)dt

+β

ρ(l(hTxn−hxn))∫
0

u(t)dt+ γ

max{ρ(l(hTxn−Txn)),ρ(l(hxn−T 2xn))}∫
0

u(t)dt.

Taking the limit as n→ ∞, yields

lim
n→∞

θ(Txn, xn) = (β + γ)

ρ(l(Tz−z))∫
0

u(t)dt. (3.26)

Again, from (3.13)

ψ(

ρ(c(T 2xn−Txn))∫
0

u(t)dt) ≤ ψ(θ(Txn, xn))− Φ(θ(Txn, xn)),

as n→ ∞ and using (3.26), we get

ψ(

ρ(c(Tz−z))∫
0

u(t)dt) ≤ ψ((β + γ)

ρ(l(Tz−z))∫
0

u(t)dt)− Φ((β + γ)

ρ(l(Tz−z))∫
0

u(t)dt),

using the continuity of ψ and Φ, we obtain

ψ(

ρ(c(Tz−z))∫
0

u(t)dt) ≤ ψ((β + γ)

ρ(c(Tz−z))∫
0

u(t)dt)

−Φ((β + γ)

ρ(c(Tz−z))∫
0

u(t)dt)

≤ ψ(

ρ(c(Tz−z))∫
0

u(t)dt)− Φ((β + γ)

ρ(c(Tz−z))∫
0

u(t)dt),

which implies that Φ((β + γ)
ρ(c(Tz−z))∫

0

u(t)dt) = 0, so by properties of Φ and u, we get ρ(c(Tz − z)) = 0 or z = Tz.

Moreover, T (Xρ) ⊆ h(Xρ) and thus there exists a point z1 ∈ Xρ such that

z = Tz = hz1. (3.27)

From (3.14), we have
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θ(Txn, z1) = ζ
ρ(l(hTxn−T 2xn)+l(hz1−Tz1))∫

0

u(t)dt

+β

ρ(l(hTxn−hz1))∫
0

u(t)dt+ γ

max{ρ(l(hTxn−Tz1)),ρ(l(hz1−T 2xn))}∫
0

u(t)dt,

as n→ ∞, yields

lim
n→∞

θ(Txn, z1) = ζ
ρ(l(Tz−Tz)+l(hz1−Tz1))∫

0

u(t)dt

+β

ρ(l(Tz−hz1))∫
0

u(t)dt+ γ

max{ρ(l(Tz−Tz1)),ρ(l(hz1−Tz))}∫
0

u(t)dt,

using (3.27), we get

lim
n→∞

θ(Txn, z1) = (ζ + γ)

ρ(l(z−Tz1))∫
0

u(t)dt. (3.28)

Again from (3.13), we have

ψ(

ρ(c(T 2xn−Tz1))∫
0

u(t)dt) ≤ ψ(θ(Txn, z1))− Φ(θ(Txn, z1)).

Taking the limit as n→ ∞ and using (3.27) and (3.28), we get

ψ(

ρ(c(z−Tz1))∫
0

u(t)dt) ≤ ψ((ζ + γ)

ρ(l(z−Tz1))∫
0

u(t)dt)− Φ((ζ + γ)

ρ(l(z−Tz1))∫
0

u(t)dt)

≤ ψ((ζ + γ)

ρ(c(z−Tz1))∫
0

u(t)dt)− Φ((ζ + γ)

ρ(c(z−Tz1))∫
0

u(t)dt)

≤ ψ(

ρ(l(z−Tz1))∫
0

u(t)dt)− Φ((ζ + γ)

ρ(l(z−Tz1))∫
0

u(t)dt),

which implies that Φ((ζ + γ)
ρ(l(z−Tz1))∫

0

u(t)dt) = 0, so by properties of Φ and u ,we get ρ(c(z − Tz1)) = 0, therefore

z = Tz1 = hz1 and also hz = hTz1 = Thz1 = Tz = z.

In addition, if one consider h to be a continuous in stead of T,

then by similar argument (as above), one can prove

hz = Tz = z.

Finally, suppose that z and w are two arbitrary common fixed point of T and h, (w ̸= z), then from (3.14), we get

θ(z, w) = ζ
ρ(l(hz−Tz)+l(hw−Tw))∫

0

u(t)dt

+β

ρ(l(hz−hw))∫
0

u(t)dt+ γ

max{ρ(l(hz−Tw)),ρ(l(hw−Tz))}∫
0

u(t)dt
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= (β + γ)

ρ(l(z−w))∫
0

u(t)dt.

From (3.13), we have

ψ(

ρ(c(Tz−Tw))∫
0

u(t)dt) ≤ ψ(θ(z, w))− Φ(θ(z, w))

ψ(

ρ(c(z−w))∫
0

u(t)dt) = ψ(

ρ(c(Tz−Tw))∫
0

u(t)dt)

≤ ψ((β + γ)

ρ(l(z−w))∫
0

u(t)dt)− Φ((β + γ)

ρ(l(z−w))∫
0

u(t)dt)

≤ ψ((β + γ)

ρ(c(z−w))∫
0

u(t)dt)− Φ((β + γ)

ρ(c(z−w))∫
0

u(t)dt)

≤ ψ(

ρ(c(z−w))∫
0

u(t)dt)− Φ((β + γ)

ρ(c(z−w))∫
0

u(t)dt),

also by properties of Φ and u, we get

Φ((β + γ)

ρ(c(z−w))∫
0

u(t)dt) = 0 =⇒ ρ(c(z − w)) = 0 or z = w.

This complete the prove of this Theorem.

If we take ψ(t) = t
2 and Φ(t) = t

4 in Theorem 3.3 we get the following Corollary

Corollary 3.1 Let Xρ be a ρ−complete modular space, where ρ satisfies the ∆2−condition. Suppose c, l ∈ R+,

c > l and T, h : Xρ → Xρ are two ρ−compatible mappings such that T (Xρ) ⊆ h(Xρ) and

ρ(c(Tx−Ty))∫
0

u(t)dt ≤ ζ
ρ(l(hx−Tx)+l(hy−Ty))∫

0

u(t)dt

+β

ρ(l(hx−hy))∫
0

u(t)dt+ γ

max{ρ(l(hx−Ty)),ρ(l(hy−Tx))}∫
0

u(t)dt

for each x, y ∈ Xρ with non−negative real numbers ζ, β, γ such that 2ζ+β+2γ < 1, whereψ,Φ are altering distences, where

u(t) : R+ → R+ be a Lebesgue−integrable mapping which is summable, subadditive on each subset of R+, nonnegative,

and such that for each

ϵ > 0,

ϵ∫
0

u(t)dt > 0.

If one of h or T is continuous, then there exists a unique common fixed point of h and T.
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